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Recap

Linear transformations, bases, connections of LTs to matrices, kernel (nullspace)
and image, rank-nullity theorem.

Eigenvectors and eigenvalues

Eigenvectors of same eigenvalue form a subspace. Eigenvectors of different
eigenvalues are linearly independent.

Inner products, norm ||v|| = +/{(v, V)

Cauchy-Schwartz: |(u, v)| < |[ull [|v]|.

Triangle inequality of norm.



1 Orthogonality and orthonormality

Definition 1.1 Two vectors u, v in an inner product space are said to be orthogonal if (u,v) =
A set of vectors S C V is said to consist of mutually orthogonal vectors if (1,v) = ﬁ:rr aH
u# v, u,v €S. Asetof S C V issaid to be orthonormal if (11,v) = O forall u # v, u,v € S

and ||u|| =1 forallu € S.

Proposition 1.2 A set S C V' \ {0y } consisting of mutually orthogonal vectors is linearly inde-
pendent.

Proof:

* If u satisfies (u,v) = 0 forall v € S \ {u}, then it also has inner product 0 with any
linear combination of S \ {u}, so it can’t be in the span unless already the 0 vector.

* Since this holds for all u € S, this means S must be linearly independent.



Proposition 1.3 (Gram-Schmidt orthogonalization) Given a finiteset {vq,...,v,} of linearly
independent vectors, there exists a set of orthonormal vectors {w;, ..., w,} such that

Span ({w,...,w,}) = Span({vy,...,0,}) .

Proof: By induction. The case with one vector is trivial. Given the statement for k vectors
and orthonormal {w;, ..., w;} such that

Span ({wy,...,w}) = Span ({v1,...,0:}),

define
k

U
Uikl = Uk —Z(Wni’kH} w; and Wiy = sz
i—1 (7|

* Unit-length is clear. Let’s check orthogonality: Yl e WEie Eestimpien et }

Wy, ..., Wi are orthonormal

> (uk+1»Wj> = (vk+1»Wj> — Z{'{=1(Vk+1»Wi><Wi»Wj) = (vk+1»Wj> — <vk+1»Wj> = 0.



Corollary 1.4 Every finite dimensional inner product space has an orthonormal basis.

Brief note on Hilbert spaces:
* Hilbert spaces also have a (countably infinite) orthonormal basis.

* Need to define basis a bit differently: span of a set of vectors is still the set of all
finite linear combinations, but we only require that for any v € V, we can get
arbitrarily close to v using elements in the span.

* We will focus on finite-dimensional vector spaces.



Fourier Coefficients

Let V be a finite-dimensional inner-product space with orthonormal basis {wy, ..., w,, }.
* So, forany v € V, there exist ¢y, ..., ¢;, such that v = {;1 C;W;.

* These c; are called Fourier Coefficients.
* Note that ¢; = (w;, v). Why?

> Let’s compute (w;, v) = (Wi,ZCjo> = Zj(wi,cjwj) =2 Cj<Wl-,Wj) = (.
* So, v = Y {w;, v)w;.

This then gives us... :



Parseval’s identity

Proposition 1.5 (Parseval’s identity) Let V be a finite dimensional inner product space and let
{w,, ..., wy} be an orthonormal basis for V. Then, for any u,v € V

(u,v) = Z (u, w;) - (w;, v) .
=1
Proof:

* We know v = ), {w;, v)w;. Pluginto LHS and distribute.

If working over R", and w; are the standard basis, with u = (u4, ...,u,,) and v =
(v4, ..., V) then this says that (u, v) = },; u;v;.



Adjoint of a Linear Transform [rey;;z;“i:‘;ﬁgfif;;“@]

Definition 2.1 Let V, W be inner product spaces over the same field IF and let ¢ : V — W be a
linear transformation. A transformation ¢* : W — V is called an adjoint of ¢ if

(w,p(v)) = (¢p"(w),v) YveV,weW.

Example 2.2 Let V = R" and W = R"™ with the usual inner product, and let ¢ : V — W be
represented by the matrix A. Then @* is represented by the matrix A'. In particular, (w, Av) =
w'Av = (Alw)'v = (Alw,v) = (¢*(w),v)). So, a symmetric matrix is “self-adjoint”.



Adjoint of a Linear Transform [rev”e?_f,zghif;‘fi;f‘;fj;”@}

Definition 2.1 Let V, W be inner product spaces over the same field IF and let ¢ : V — W be a
linear transformation. A transformation ¢* : W — V is called an adjoint of ¢ if

(w,p(v)) = (¢p"(w),v) YveV,weW.

wwons from [0,1] to [-1,1] ]

Example 2.4 Let V = C([0,1|,[—1,1|) with the inner product {fi, f2) fﬂ fi(x) fa(x)dx,

and let W = C([0,1/2],[—1,1|) with the inner product (g1,2) fn gg(x)dx Let
@ : V — W bedefined as ¢(f)(x) = f(2x). Then, ¢* : W — V can be deﬁned as

9" (g)(y) = (1/2)-g(y/2).

Let’s calculate: (g, @ (f)) = fol/zg(x)f(Zx)dx = folgg (%)f(y)dy, using y = 2x,dy = 2dx.
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Characterization of linear transformations from V to IF

Proposition 2.5 (Riesz Representation Theorem) Let V be a finite-dimensional inner product
space over F and let w : V — [F be a linear transformation. Then there exists a unique z € V such
that a(v) = (z,v) Yo € V.

In other words, the only linear transformations from V to [F are those given by (z,-) for
some Z.

Proof: Let {w,,...,w,} be an orthonormal basis for V. Given v, let ¢y, ..., ¢,, be its Fourier
coefficients, so v = Y ;c;w;, and ¢; = (w;, v). Since « is a linear transformation, we must

have a(v) = Y, cia(w;) = Y, (w;, v) a(w;) = E;< (m,)w,,z}> = (z,v) forz = ), a(w; ) w;.

Scalar, so can move into 15t slot
by taking conjugate

Using this, can show that any linear transformation has a unique adjoint. "



Every linear transformation has a unique adjoint

Proposition 2.6 Let V, W be finite dimensional inner product spaces and let ¢ : V. — W be a
linear transformation. Then there exists a unique ¢* : W — V, such that

(w,p(v)) = (¢"(w),v) YveV,weW.
Proof:

* For each w, the mapping Y, (v) = (w, @(v)) is a linear transformation from I/ to F.
* So, exists unique z,, € V s.t. Y, (v) = (z,,, V).
* Now, consider B: W — V defined as S (w) = z,,. So, we have (w, p(v)) = (B(w), V).

* Verify [ is linear. In particular, for all wy, w, have (B(w; + wy),v) = (w; + w,, @(v)) =
(B(wy) + B(wy), v) for all v, which implies S (w; + w,) = B(w;) + B(w,). Similar
reasoning for B(cw) = cf(w).
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Self-adjoint Transformations

Definition 3.1 A linear transformation ¢ : V — V is called self-adjoint if ¢ = ¢@*. Linear
transformations from a vector space to itself are called linear operators.

Example 3.2 The transformation represented by matrix A € C"" is self-adjoint if A = AT,
Such matrices are called Hermitian matrices.

So, over the reals, square symmetric matrices are self-adjoint.
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Self-adjoint Transformations

Proposition 3.3 Let V be an inner product space and let ¢ : V. — V be a self-adjoint linear
operator. Then

- All eigenvalues of ¢ are real.

- If {wn, ..., w, } are eigenvectors corresposnding to distinct eigenvalues then they are mutu-
ally orthogonal.

Proof (first part):
* Let v be an eigenvector and A its associated eigenvalue.

* We know that (¢ (v), v) = (v, p(V)), so {(Av, v) = (v, V), so 1 = A.
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Self-adjoint Transformations

Proposition 3.3 Let V be an inner product space and let ¢ : V. — V be a self-adjoint linear
operator. Then

- All eigenvalues of ¢ are real.

- If {wn, ..., w, } are eigenvectors corresposnding to distinct eigenvalues then they are mutu-
ally orthogonal.

Proof (second part):
* Say w4 has eigenvalue A; and w, has eigenvalue A,, where A; # A,.
* We know (@(w1), wz) = (wy, 9(W3)), s0 (Aiwq, wy) = (wy, A;w3).

* This means A{(wy, w,) = A,{(wy,w,). So, must have (w;,w,) = 0.
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